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It will be proved that the simple 3-polyhedra with f + 1 facets are obtained from

all simple 3-polyhedra with f facets by 2-face splits. The numbers of

combinatorial types of simple 3-polyhedra with up to 15 facets are stated with

respect to their automorphism group order.

1. Basic definitions

The characterization of the facial structure of polyhedra has a

long tradition in combinatorial geometry. Steinitz & Rade-

macher's (1934) fundamental theorem asserts that

Theorem of Steinitz. Every ®nite 3-connected planar graph

is isomorphic to the edge graph of a 3-polyhedron.

Under a 3-polyhedron P, we understand any bounded non-

degenerate region of Euclidean space E3 which is obtained by

intersecting a ®nite number f of closed half spaces Hi,

P �
\f

i�1

Hi: �1�

The half spaces Hi are convex, hence P is convex too. We

denote by vertices, edges and facets the 0-, 1- and 2-faces of P,

respectively. The 3-face is P itself.

Among the k-faces of P, 0 � k � 3, there exists a partial

ordering with respect to the inclusion operation. The k-faces,

together with the empty set, determine by inclusion the face

lattice L�P� that is, for any two faces F and F0 of L�P�, the least

upper bound is given by the k-face F_ � F [ F0 having least k.

The greatest lower bound is given by the l-face F^ � F \ F0.
The 3-polyhedron having least k-faces is the 3-simplex. It

consists of 4
k�1

ÿ �
k-faces, 0 � k � 3.

Two polyhedra P and P0 are called combinatorially

equivalent, P0 'comb
P, and belong to the same combinatorial

type, if there exists a combinatorial isomorphism

� : L�P� ! L�P0�. Any realization of a polyhedron that is

combinatorial equivalent to P is called a representative of its

combinatorial type.

If the combinatorial structure of a 3-polyhedron P is

considered only, a half-space cut applied to P which results in

P0 can be represented by a transformation � of the corre-

sponding face lattice L�P0� � � � L�P�. We denote such a

transformation as a combinatorial cut.

In order to classify the combinatorial types, we use the

uni®ed polyhedron scheme which was introduced by Engel

(1981), and then generalized (Engel, 1991a,b). A ¯ag is

de®ned to be a subseries of successively subordinated k-faces

of L�P�,

0-face � 1-face � 2-face � P:

Given any such ¯ag, we can consecutively number all k-faces

of L�P� in a unique way. Next, we set up the polyhedron

scheme by writing down for each facet in their consecutive

order the numbers of all its subordinated vertices in increasing

order. This polyhedron scheme depends only on the chosen

initial ¯ag. We write the polyhedron schemes for each possible

¯ag, and put them into classes of identical schemes. The classes

are lexicographically ordered, and a representative of the ®rst

class is taken as the uni®ed polyhedron scheme of P. Each

class contains the same number of identical schemes which

equals the order of the combinatorial automorphism group of

L�P�. The uni®ed polyhedron scheme gives a unique char-

acterization of L�P� and, hence, of its combinatorial type. On

the other hand, we can generate L�P� from its polyhedron

scheme.

It was proved by Mani (1971) that

Theorem of Mani. For each 3-polyhedron P there exists a

realization P0 such that

(i) P0 'comb
P;

(ii) the point group of P0 is isomorphous to the combina-

torial automorphism group of L�P�.
A 3-polyhedron P is called simple, if in every vertex of it

exactly three facets meet, and thus in each vertex three edges

meet. By valence of the vertex, we denote the number of edges

meeting in a vertex. In what follows, we will mainly consider

simple 3-polyhedra. Given the number f of facets of a simple

3-polyhedron, the numbers v and e of vertices and edges,

respectively, are readily obtained from Euler's relation.

v � 2f ÿ 4; e � 3f ÿ 6: �2�
Let fi be the number of 2-faces of P that have subordinated

ei edges, i � 1; . . . ; r. The 2-subordination symbol is de®ned

by

e1f1
e2f2

. . . erfr
; �3�

with e1 < e2 < . . . < er. It holds that

f �Pr

i�1

fi:



In Engel (1982), the combinatorial types of 3-polyhedra

with up to 11 facets were calculated, starting from a 3-simplex,

by cuts and edge contractions. The combinatorial types of

simple 3-polyhedra with f � 1 facets were derived from all

combinatorial types of 3-polyhedra with f facets which have at

most one vertex of valence >3. In this note, we present an

algorithm, called the split algorithm, which allows the deter-

mination of the combinatorial types of simple 3-polyhedra

with f � 1 facets directly from the simple ones with f facets

using 2-face splits only.

In order to determine a 3-polyhedron having f � 1 facets

from a 3-polyhedron P having f facets, we use half-space

intersections which cut off some part of a facet of P. We only

consider general cuts that contain no vertices of P. The

simplicity of P requires that edges of P are cut in inner points

only. As a k-face cut, we denote the cutting off of a complete

k-face, k � 0; 1. As a 2-face split, we denote the cutting off of n

consecutive vertices of a single facet having s vertices,

0< n< s. A 2-face split is called proper if n> 2. For n � 1; 2,

the 2-face splits correspond to 0- and 1-face cuts, respectively.

In order to economize on the calculations, it is useful to treat

the 0- and 1-face cuts separately. A cut dissects P into two

simple 3-polyhedra,

P � P0 t�; �4�
where t is the standard notation for the pairwise interior

disjoint union of P0 and �. Let P0 be the resulting polyhedron,

and let � be the piece cut off. When cutting off n consecutive

vertices of a single facet, n> 2, we denote � to be an n-blade.

Let F � P be a 2-face with s vertices v1; . . . ; vs. We specify n

consecutive vertices from F, vl1
ÿ vl2

ÿ . . .ÿ vln
, 0< n< s. As

complement cut in F, we denote the cutting off of the other

sÿ n consecutive vertices of F.

In any dimension d � 3, the k-face cuts, 0 � k � dÿ 2, and

the 2-face splits were denoted in Engel (1991a) as free cuts

because they can always be performed, independently of the

particular shape of any d-polytope.

Besides the 2-face splits, we will make use of the crossing

operation introduced by Eberhard (1891) which is justi®ed by

the theorem of Steinitz. For a simple 3-polyhedron P, consider

the edge E12 having subordinated the vertices v1 and v2. Since

P is simple, each vertex has valence 3. We denote the 3 edges

radiating from v1 to v2, v3 and v4 by E12, E13 and E14,

respectively, and those radiating from v2 to v5 and v6 by E25

and E26, respectively. The four sets of consecutive vertices

v3 ÿ v1 ÿ v2 ÿ v5, v4 ÿ v1 ÿ v2 ÿ v6, v3 ÿ v1 ÿ v4 and

v5 ÿ v2 ÿ v6 belong to the facets F1, F2, F3 and F4, respectively.

We require the facets F1 and F2 to have subordinated more

than three vertices each. As a crossing operation, we under-

stand the following process: The edge E12 is contracted such

that the subordinated vertices v1 and v2 coincide, and then

both vertices are taken apart again but in a direction

perpendicular to the original edge E12. Thus, the new edge E012

forms a cross with the original edge E12. The transformed

vertex v01 is connected by three edges to v02, v3 and v5, and the

transformed vertex v02 is connected by three edges to v01, v4 and

v6, respectively. By the crossing operation, the facets F3 and F4

become adjacent and their numbers of vertices increase by

one, whereas the other two facets, F1 and F2, become disjoint,

and their numbers of vertices decrease by one.

2. The split algorithm

The split algorithm is based on the following three theorems.

Theorem 1. Every 3-polyhedron can be obtained starting

from a 3-simplex by successive half-space intersections.

Proof. Theorem 1 is a direct consequence of (1). Let P be a

3-polyhedron having f facets. Since P is bounded, there exists

a 3-simplex T such that P � T. From the convexity of P, it

follows that each facet, irrespective of the order of succession,

determines a unique half-space intersection. Starting from a

3-simplex, there are needed f half-space intersections in order

to determine P. ut

The second theorem reduces all feasible cuts to 2-face splits

only.

Theorem 2. Each simple 3-polyhedron with f � 1 facets can

be obtained from a simple 3-polyhedron with f facets by a

2-face split.

Proof. Let P be a simple 3-polyhedron with f facets.

(i) Trivially, each 2-face split gives a 3-polyhedron with

f � 1 facets.

(ii) Assume any cut of arbitrary complexity, subject to the

requirement that no complete facet is cut off because other-

wise the number of facets would not increase. Necessarily,

each facet which is involved in the cut contains exactly one cut

edge. The cut edges de®ne a cut polygon C, which is homeo-

morphic to a circle. The cut dissects P into P � P0 t�. By the

conditions of the cut, each facet of � has at least one common

edge with C. By the theorem of Steinitz, we can transform �
by successive crossings to an n-blade b� without changing C.

Now, bP � P0 t b� is a simple 3-polytope with f facets and the

half-space intersection is, as proposed, a 2-face split. ut

The third theorem reduces the number of required 2-face

splits.

Theorem 3. Let F be a facet of a simple 3-polyhedron P, and

assume that F has s vertices. Let P0 be the result of cutting off

n consecutive vertices of F, 0< n< s, and let P00 be the result

of the corresponding complement cut in F. Then it holds that

P00 'comb
P0.

Proof. By cutting off n consecutive vertices of F, 0< n< s,

the number of vertices of P0 is increased by 2. The two addi-

tional vertices result from the cut edge which splits F. The

complement cut in F has the same cut edge in F, and, there-

fore, the same two additional vertices result for P00. It follows

that L�P0� and L�P00� have the same connectivity and, hence,

they are combinatorially equivalent. ut
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By theorem 1, the split algorithm to determine the simple

3-polyhedra starts from a 3-simplex. We only need to execute a

0-face cut, because the 1-face cut is the corresponding

complement cut, and by theorem 3 the resulting 3-polyhedra

are combinatorially equivalent. Thus we get the unique

combinatorial type of simple 3-polyhedron having 5 facets.

We now assume that all combinatorial types of simple

3-polyhedra with f facets are known, and we proceed to

determine those with f � 1 facets. For each combinatorial type

of simple 3-polyhedra P with f -facets we perform the

following three steps:

(i) For each vertex of P, we execute a 0-face cut.

(ii) For each edge of P, where both adjacent facets have at

least four vertices, we perform a 1-face cut on that edge. Edges

that belong to a triangle need not be considered because the

cut would correspond to a complement cut of some 0-face cut

in (i).

(iii) For each facet F � P that has s � 6 vertices, we cut off

all possible n-blades, 3 � n � bs
2c, beginning at each of the s

vertices of F (b�c is the standard notation for the largest

integer less than or equal to �). By theorem 3, we have to

consider at most n � bs
2c consecutive vertices of F. For

3< s< 6, any 2- face split would correspond to a complement

0- or 1-face cut in (ii).

By theorem 2, this completes the list of necessary 2-face

splits that are needed in order to obtain the combinatorial

types of simple 3-polyhedra with f � 1 facets from those with f

facets.

3. Results

The split algorithm was implemented in C-language. In order

to perform the 2-face splits, the half-space intersection algor-

ithm of Engel (1986) was used which transforms L�P� into

L�P0�. In order to classify the combinatorial types of simple

3-polyhedra, the uni®ed polyhedron scheme was calculated for

each simple 3-polyhedron produced.

The simple 3-polyhedra with few facets are well known. The

combinatorial types of 3-polyhedra with up to 6 facets were

determined by Steiner (1829), and those with up to 8 facets by

Kirkman (1862), and again by Hermes (1899) and Britton &

Dunitz (1973). Fedorov (1893) determined the combinatorial

types of simple 3-polyhedra with nine facets. However, owing

to an insuf®cient classi®cation scheme, his list included two

doubles as was found by Engel (1994). Duijvestijn & Federico

(1981) determined the combinatorial types of 3-polyhedra

with up to ten facets. Bowen & Fisk (1967) determined the

combinatorial types of simple 3-polyhedra with 12 facets. In

Engel (1982), the combinatorial types of 3-polyhedra with up

to 11 facets were determined and, from these, the simple ones

with 12 facets were obtained. All previous results could be

con®rmed. In Engel (1994), the 6386475 combinatorial types

of 3-polyhedra with 12 facets were determined and, from

these, the 49566 combinatorial types of simple 3-polyhedra

with 13 facets were obtained. For simple 3-polyhedra with up

to 13 facets, in a series of papers, Voytekhovsky (2001a,b) and

Voytekhovsky & Stepenshchikov (2002) determined the

symmetries of 3-polyhedra whose point groups are isomor-

phous to the combinatorial automorphism groups of the

corresponding face lattices. With the split algorithm, we could

con®rm the known results on simple 3-polyhedra, and we

further determined the combinatorial types of simple 3-poly-

hedra with 14 and 15 facets. The results are summarized in

Table 1. In the table are given under the column order the

combinatorial automorphism group orders of the edge graphs.

The row 2-sub states the number of different 2-subordination

Table 1
The numbers of combinatorial types of simple 3-polyhedra with given order of automorphism group.

Order 4 5 6 7 8 9 10 11 12 13 14 15

1 ± ± ± ± 2 16 137 970 6756 47030 331796 2382352
2 ± ± ± 1 5 25 69 241 747 2377 7587 23994
3 ± ± ± ± ± ± 1 1 1 12 12 20
4 ± ± 1 1 3 5 13 27 68 118 266 439
6 ± ± ± 2 ± 1 6 5 7 28 27 25
8 ± ± ± ± 1 ± 4 ± 10 ± 19 ±

10 ± ± ± ± ± ± ± ± 1 ± ± ±
12 ± 1 ± ± 1 2 ± 4 3 ± 9 10
16 ± ± ± ± ± ± 1 ± ± ± 2 ±
20 ± ± ± 1 ± ± ± ± ± ± ± ±
24 1 ± ± ± 2 ± 1 ± ± ± 1 ±
28 ± ± ± ± ± 1 ± ± ± ± ± ±
32 ± ± ± ± ± ± 1 ± ± ± ± ±
36 ± ± ± ± ± ± ± 1 ± ± ± ±
40 ± ± ± ± ± ± ± ± 1 ± ± ±
44 ± ± ± ± ± ± ± ± ± 1 ± ±
48 ± ± 1 ± ± ± ± ± ± ± 3 ±
52 ± ± ± ± ± ± ± ± ± ± ± 1

120 ± ± ± ± ± ± ± ± 1 ± ± ±
Total 1 1 2 5 14 50 233 1249 7595 49566 339722 2406841
2-sub 1 1 2 5 13 33 85 199 445 947 1909 3713
Max. 1 1 1 1 2 3 11 47 186 762 4692 21203



symbols, and in the row max. are given the maximal numbers

of combinatorial types of polyhedra having the same

2-subordination symbol. The uni®ed polyhedron schemes for

the combinatorial types of simple 3-polyhedra with up to

15 facets are available upon request.
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